What is the effect on antibiotic resistant genes of chlorine disinfection in drinking water supply systems? A systematic review protocol

Author:

Ghordouei Milan Esfandiar,Mahvi Amir Hossein,Nabizadeh Ramin,Alimohammadi Mahmood

Abstract

Abstract Background Antibiotic-resistant bacteria (ARB) usually enter water sources in different ways, such as via municipal and hospital wastewaters. Because conventional technologies used to treat water inefficient in removing these contaminants (especially antibiotic-resistant genes; ARGs), these contaminants easily enter drinking water distribution networks and pose serious threats to consumers’ health. This study’s main purpose is to systematically investigate the effect of chlorine disinfection on ARGs in drinking water supply systems. This study could play an important role in elucidating the effect of chlorine disinfection on ARGs. Methods The systematic review outlining this protocol will be performed according to the Collaboration for Environmental Evidence (CEE) guidelines. The main question is, “what is the effect of chlorine disinfection on ARGs in drinking water supply systems?” For this purpose, the articles will be considered, in which chlorine’s effect on ARGs is investigated. The search includes electronic resources, grey literature, and related websites. Electronic resources include Scopus, PubMed, Embase, Web of Science Core Collection, and Science Direct. After the final search, the obtained articles will be collected in the reference management software (Endnote X8). Upon removing the duplicate articles, the first stage of article screening will be performed based on the title and abstract the articles. In the second stage, the articles obtained from the first screening stage will be screened based on the full text of the articles based on the eligibility criteria. Then, two members of the expert team extract the data. To assess the validity of the articles, bias sources will be determined by an expert team. Biases will be defined according to the criteria designed by Bilotta et al. Finally, a narrative synthesis will be performed for the extracted data; if appropriate data are available, quantitative analysis will also be performed.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3