Abstract
Abstract
Background
This study had a threefold aim: to test the value of stakeholder involvement in HTA to reduce evidence gaps and interpret findings; and to assess a medical device by applying the EUnetHTA Core Model (CM) in South Africa and thus ultimately provide a first overview of evidence for potential widespread adoption of the technology in a primary health care (PHC) setting. Used in primary healthcare setting for obstetric use, the technology under assessment is a low-cost continuous wave Doppler ultrasound (DUS).
Methods
The scoping of the assessment was defined by involving policy makers in selecting the domains and corresponding questions relevant to the ultrasound and its use. Additionally, hospital managers were invited to respond to dichotomous questions on the criteria for procurement. To substantiate evidence obtained from an initial literature review, different stakeholders were identified and consulted. The evidence generated fromall steps was used to populate the high-ranked assessment elements of the CM.
Results
The HTA on continuous-wave DUS incorporated the evidence on organizational, ethical, and social value of its use together with effectiveness, safety, and cost-effectiveness of the technology. The domains on “health problem” and “safety” had a higher rank than the rest of the nine domains. Unexplained fetal mortality is the largest single contributor to perinatal deaths in South Africa. Pregnant women in PHC setting were examined using a continuous-wave DUS, after their routine antenatal visit. The healthcare professionals interviewed, indicated the benefit in the use of continuous-wave DUS in the PHC setting and the need for training.
Conclusions
Collection and generation of evidence based on the HTA CM and the chosen decision criteria provided a generalized but structured guidance on the methodology. Several questions were not applicable for the technology and the context of its use and elimination of those that are inappropriate for the African context, resulted in a pragmatic solution. Engaging and consulting local stakeholders was imperative to understand the context, reduce evidence gaps, and address the uncertainties in the evidence, ultimately paving the way for technology adoption. Given the ongoing studies and the evolving evidence base, the potential of this technology should be reassessed.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. You D, Hug L, Ejdemyr S, Idele P, Hogan D, Mathers C, et al. Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: A systematic analysis by the UN Inter-Agency Group for Child Mortality Estimation. Lancet. 2015;386:2275–86. https://doi.org/10.1016/S0140-6736(15)00120-8.
2. WHO. Trends in maternal mortality 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. Geneva:WHO; 2019. https://www.who.int/reproductivehealth/publications/maternal-mortality-2000-2017/en/.
3. Lawn JE, Blencowe H, Waiswa P, Amouzou A, Mathers C, Hogan D, et al. Stillbirths: Rates, risk factors, and acceleration towards 2030. Lancet. 2016;387:587–603.
4. Manasyan A, Saleem S, Koso-Thomas M, Althabe F, Pasha O, Chomba E, et al. Assessment of obstetric and neonatal health services in developing country health facilities. Am J Perinatol. 2013;30:787–94.
5. Kruk ME, Kujawski S, Moyer CA, Adanu RM, Afsana K, Cohen J, et al. Next generation maternal health: external shocks and health- system innovations. Lancet. 2016;388:2296–306.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献