Neural networks and hospital length of stay: an application to support healthcare management with national benchmarks and thresholds

Author:

Ippoliti RobertoORCID,Falavigna Greta,Zanelli Cristian,Bellini Roberta,Numico Gianmauro

Abstract

Abstract Background The problem of correct inpatient scheduling is extremely significant for healthcare management. Extended length of stay can have negative effects on the supply of healthcare treatments, reducing patient accessibility and creating missed opportunities to increase hospital revenues by means of other treatments and additional hospitalizations. Methods Adopting available national reference values and focusing on a Department of Internal and Emergency Medicine located in the North-West of Italy, this work assesses prediction models of hospitalizations with length of stay longer than the selected benchmarks and thresholds. The prediction models investigated in this case study are based on Artificial Neural Networks and examine risk factors for prolonged hospitalizations in 2018. With respect current alternative approaches (e.g., logistic models), Artificial Neural Networks give the opportunity to identify whether the model will maximize specificity or sensitivity. Results Our sample includes administrative data extracted from the hospital database, collecting information on more than 16,000 hospitalizations between January 2018 and December 2019. Considering the overall department in 2018, 40% of the hospitalizations lasted more than the national average, and almost 3.74% were outliers (i.e., they lasted more than the threshold). According to our results, the adoption of the prediction models in 2019 could reduce the average length of stay by up to 2 days, guaranteeing more than 2000 additional hospitalizations in a year. Conclusions The proposed models might represent an effective tool for administrators and medical professionals to predict the outcome of hospital admission and design interventions to improve hospital efficiency and effectiveness.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3