Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons
Author:
Nguyễn Phong Vũ,Bellafiore Stéphane,Petitot Anne-Sophie,Haidar Rana,Bak Aurélie,Abed Amina,Gantet Pascal,Mezzalira Itamara,de Almeida Engler Janice,Fernandez Diana
Abstract
Abstract
Background
Plant-parasitic nematodes developed strategies to invade and colonize their host plants, including expression of immune suppressors to overcome host defenses. Meloidogyne graminicola and M. incognita are root-knot nematode (RKN) species reported to damage rice (Oryza sativa L.) cultivated in upland and irrigated systems. Despite M. incognita wide host range, study of the molecular plant - RKN interaction has been so far limited to a few dicotyledonous model plants. The aim of this study was to investigate if the rice cv. Nipponbare widely used in rice genomic studies could be used as a suitable monocotyledon host plant for studying M. incognita pathogenicity mechanisms. Here we compared the ability of M. graminicola and M. incognita to develop and reproduce in Nipponbare roots. Next, we tested if RKNs modulates rice immunity-related genes expression in galls during infection and express the Mi-crt gene encoding an immune suppressor.
Results
Root galling, mature females, eggs and newly formed J2s nematodes were obtained for both species in rice cultivated in hydroponic culture system after 4-5 weeks. Meloidogyne graminicola reproduced at higher rates than M. incognita on Nipponbare and the timing of infection was shorter. In contrast, the infection characteristics compared by histological analysis were similar for both nematode species. Giant cells formed from 2 days after infection (DAI) with M. graminicola and from 6 DAI with M. incognita. Real-time PCR (qRT-PCR) data indicated that RKNs are able to suppress transcription of immune regulators genes, such as OsEDS1, OsPAD4 and OsWRKY13 in young galls. Four M. incognita reference genes (Mi-eif-3, Mi-GDP-2, Mi-Y45F10D.4, and Mi-actin) were selected for normalizing nematode gene expression studies in planta and in pre-parasitic J2s. Meloidogyne incognita expressed the immune suppressor calreticulin gene (Mi-crt) in rice roots all along its infection cycle.
Conclusion
RKNs repress the transcription of key immune regulators in rice, likely in order to lower basal defence in newly-formed galls. The calreticulin Mi-CRT can be one of the immune-modulator effectors secreted by M. incognita in rice root tissues. Together, these data show that rice is a well suited model system to study host- M. incognita molecular interactions in monocotyledons.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science,Agronomy and Crop Science
Reference54 articles.
1. Abad P, Gouzy J, Aury J, Castagnone-Sereno P, Danchin E, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok V, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, et al.: Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita . Nat Biotechnol 2008, 26(8):909–915. 10.1038/nbt.1482 2. Barcala M, Garcia A, Cabrera J, Casson S, Lindsey K, Favery B, García-Casado G, Solano R, Fenoll C, Escobar C: Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 2010, 61: 698–712. 10.1111/j.1365-313X.2009.04098.x 3. Bellafiore S, Briggs SP: Nematode effectors and plant responses to infection. Curr Opin Plant Biol 2010, 13(4):442–448. 10.1016/j.pbi.2010.05.006 4. Bellafiore S, Shen Z, Rosso MN, Abad P, Shih P, Briggs SP (2008) Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog 4(10):p.e1000192 Bellafiore S, Shen Z, Rosso MN, Abad P, Shih P, Briggs SP (2008) Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog 4(10):p.e1000192 5. Bhattarai KK, Xie QG, Mantelin S, Bishnoi U, Girke T, Navarre DA, Kaloshian I: Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol Plant-Microbe Interact 2008, 21(9):1205–1214. 10.1094/MPMI-21-9-1205
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|