Author:
Wang Ye,Wang Meihan,Yan Xia,Chen Kaixuan,Tian Fuhao,Yang Xiao,Cao Liyu,Ruan Nan,Dang Zhengjun,Yin Xuelin,Huang Yuwei,Li Fengcheng,Xu Quan
Abstract
Abstract
Background
Plant cell walls have evolved precise plasticity in response to environmental stimuli. The plant heterotrimeric G protein complexes could sense and transmit extracellular signals to intracellular signaling systems, and activate a series of downstream responses. dep1 (Dense and Erect Panicles 1), the gain-of-function mutation of DEP1 encoding a G protein γ subunit, confers rice multiple improved agronomic traits. However, the effects of DEP1 on cell wall biosynthesis and wall-related agronomic traits remain largely unknown.
Results
In this study, we showed that the DEP1 mutation affects cell wall biosynthesis, leading to improved lodging resistance and biomass saccharification. The DEP1 is ubiquitously expressed with a relatively higher expression level in tissues rich in cell walls. The CRISPR/Cas9 editing mutants of DEP1 (dep1-cs) displayed a significant enhancement in stem mechanical properties relative to the wild-type, leading to a substantial improvement in lodging resistance. Cell wall analyses showed that the DEP1 mutation increased the contents of cellulose, hemicelluloses, and pectin, and reduced lignin content and cellulose crystallinity (CrI). Additionally, the dep1-cs seedlings exhibited higher sensitivity to cellulose biosynthesis inhibitors, 2,6-Dichlorobenzonitrile (DCB) and isoxaben, compared with the wild-type, confirming the role of DEP1 in cellulose deposition. Moreover, the DEP1 mutation-mediated alterations of cell walls lead to increased enzymatic saccharification of biomass after the alkali pretreatment. Furthermore, the comparative transcriptome analysis revealed that the DEP1 mutation substantially altered expression of genes involved in carbohydrate metabolism, and cell wall biosynthesis.
Conclusions
Our findings revealed the roles of DEP1 in cell wall biosynthesis, lodging resistance, and biomass saccharification in rice and suggested genetic modification of DEP1 as a potential strategy to develop energy rice varieties with high lodging resistance.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献