Variety-Specific Transcriptional and Alternative Splicing Regulations Modulate Salt Tolerance in Rice from Early Stage of Stress

Author:

Jian Guihua,Mo Yujian,Hu Yan,Huang Yongxiang,Ren Lei,Zhang Yueqin,Hu Hanqiao,Zhou Shuangxi,Liu Gang,Guo Jianfu,Ling Yu

Abstract

AbstractSalt stress poses physiological drought, ionic toxicity and oxidative stress to plants, which causes premature senescence and death of the leaves if the stress sustained. Salt tolerance varied between different rice varieties, but how different rice varieties respond at the early stage of salt stress has been seldom studied comprehensively. By employing third generation sequencing technology, we compared gene expressional changes in leaves of three rice varieties that varied in their level of tolerance after salt stress treatment for 6 h. Commonly up-regulated genes in all rice varieties were related to water shortage response and carbon and amino acids metabolism at the early stage of salt stress, while reactive oxygen species cleavage genes were induced more in salt-tolerant rice. Unexpectedly, genes involved in chloroplast development and photosynthesis were more significantly down-regulated in the two salt tolerant rice varieties ‘C34’ and ‘Nona Bokra’. At the same time, genes coding ribosomal protein were suppressed to a more severe extent in the salt-sensitive rice variety ‘IR29’. Interestingly, not only variety-specific gene transcriptional regulation, but also variety-specific mRNA alternative splicing, on both coding and long-noncoding genes, were found at the early stage of salt stress. In summary, differential regulation in gene expression at both transcriptional and post-transcriptional levels, determine and fine-tune the observed response in level of damage in leaves of specific rice genotypes at early stage of salt stress.

Funder

Special project for enterprise science and Technology Commissioner of Guangdong Province

Zhanjiang science and technology planning project

Basic and Applied Basic Research Foundation of Guangdong Province

Innovation & University Improvement Programs from Guangdong Ocean University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3