Abstract
Abstract
Background
Grain size and weight are important target traits determining grain yield and quality in rice. Wild rice species possess substantial elite genes that can be served as an important resource for genetic improvement of rice. In this study, we identify and validate a novel QTL on chromosome 7 affecting the grain size and weight using introgression lines from cross of Oryza sativa and Oryza minuta.
Results
An introgression line ‘IL188’ has been achieved from a wild species Oryza minuta (2n = 48, BBCC, W303) into O. sativa japonica Nipponbare. The F2 and F2:3 populations derived from a cross between IL188 and Nipponbare were used to map QTLs for five grain size traits, including grain length (GL), grain width (GW), grain length to width ratio (LWR), grain thickness (GT) and thousand grain weight (TGW). A total of 12 QTLs for the five grain traits were identified on chromosomes 1, 2, 3, 6, 7, and 8. The QTL-qGL7 controlling GL on chromosome 7 was detected stably in the F2 and F2:3 populations, and explained 15.09–16.30% of the phenotypic variance. To validate the effect of qGL7, eight residual heterozygous line (RHL) populations were developed through selfing four F2:3 and four F2:4 plants with different heterozygous segments for the target region. By further developing SSR and Indel markers in the target interval, qGL7 was delimited to a ~ 261 kb region between Indel marker Y7–12 and SSR marker Y7–38, which also showed significant effects on grain width and thousand grain weight. Comparing with the reference genome of Nipponbare, stop or frameshift mutations in the exon of the three putative genes LOC_Os07g36830, LOC_Os07g36900 and LOC_Os07g36910 encoding F-box domain-containing proteins may be the candidate genes for qGL7. Scanning electron microscopy analysis of the glume’s epidermal cells showed that the cell length and width of NIL-qGL7IL188 was higher than NIL-qGL7Nip, indicating that qGL7 increases grain size and weight by regulating cell expansion.
Conclusions
In this study, we detected 12 QTLs regulating grain size and weight using an introgression line from a cross between Oryza sativa and Oryza minuta. Of these loci, we confirmed and delimited the qGL7 to a ~ 261 kb region. Three putative genes, LOC_Os07g36830, LOC_Os07g36900 and LOC_Os07g36910 encoding F-box domain-containing proteins may be the candidate genes for qGL7. These results provide a basis for map-based cloning of the qGL7 gene and useful information for marker assisted selection in rice grain quality improvement.
Funder
Major Scientific and Technological Project for New Varieties Breeding of Zhejing Province
Zhejiang Provincial Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science,Agronomy and Crop Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献