Abstract
Abstract
Background
Rice rooting ability is a complex agronomical trait that displays heterosis and plays an important role in rice growth and production. Only a few quantitative trait loci (QTLs) have been identified by bi-parental population. More genes or QTLs are required to dissect the genetic architecture of rice rooting ability.
Results
To characterize the genetic basis for rice rooting ability, we used a natural rice population, genotyped by a 90 K single nucleotide polymorphism (SNP) array, to identify the loci associated with rooting-related traits through the genome-wide association study (GWAS). Population structure analysis divided the natural population into two subgroups: indica and japonica. We measured four traits for evaluating rice rooting ability, namely root growth ability (RGA), maximum root length (MRL), root length (RL), and root number (RN). Using the association study in three panels consisting of one for the full population, one for indica, and one for japonica, 24 SNPs associated with rooting ability-related traits were identified. Through comparison of the relative expression levels and DNA sequences between germplasm with extreme phenotypes, results showed that LOC_Os05g11810 had non-synonymous variations at the coding region, which may cause differences in root number, and that the expression levels of LOC_Os04g09900 and LOC_Os04g10060 are closely associated with root length variation.
Conclusions
Through evaluation of the rice rooting ability-related traits and the association mapping, we provided useful information for understanding the genetic basis of rice rooting ability and also identified some candidate genes and molecular markers for rice root breeding.
Funder
Ten Thousand Person Plan of Zhejiang Province
Natural Science Foundation of Zhejiang Province
Chinese Academy of Agricultural Sciences
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science,Agronomy and Crop Science
Reference49 articles.
1. Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun 300:775–783
2. Anandan A, Anumalla M, Pradhan SK, Ali J (2016) Population structure, diversity and trait association analysis in Rice (Oryza sativa L.) Germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS ONE 11:e0152406
3. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635
4. Chen G, Feng H, Hu Q, Qu H, Chen A, Yu L, Xu G (2015) Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development. Plant Biotechnol J 13:833–848
5. Dai G, Hua Z, Chen W, Xu Z, Wang Y (2008) Comparison in root characteristics among japonica hybrid rice,japonica conventional rice,upland rice and India rice varieties. J Shenyang Agric Univ 39:515–519
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献