Genetic Mapping of the Root Mycobiota in Rice and its Role in Drought Tolerance

Author:

Andreo-Jimenez Beatriz,te Beest Dennis E.,Kruijer Willem,Vannier Nathan,Kadam Niteen N.,Melandri Giovanni,Jagadish S. V. Krishna,van der Linden Gerard,Ruyter-Spira Carolien,Vandenkoornhuyse Philippe,Bouwmeester Harro J.

Abstract

Abstract Background Rice is the second most produced crop worldwide, but is highly susceptible to drought. Micro-organisms can potentially alleviate the effects of drought. The aim of the present study was to unravel the genetic factors involved in the rice-microbe interaction, and whether genetics play a role in rice drought tolerance. For this purpose, the composition of the root mycobiota was characterized in 296 rice accessions (Oryza sativa L. subsp. indica) under control and drought conditions. Genome wide association mapping (GWAS) resulted in the identification of ten significant (LOD > 4) single nucleotide polymorphisms (SNPs) associated with six root-associated fungi: Ceratosphaeria spp., Cladosporium spp., Boudiera spp., Chaetomium spp., and with a few fungi from the Rhizophydiales order. Four SNPs associated with fungi-mediated drought tolerance were also found. Genes located around those SNPs, such as a DEFENSIN-LIKE (DEFL) protein, EXOCYST TETHERING COMPLEX (EXO70), RAPID ALKALINIZATION FACTOR-LIKE (RALFL) protein, peroxidase and xylosyltransferase, have been shown to be involved in pathogen defense, abiotic stress responses and cell wall remodeling processes. Our study shows that rice genetics affects the recruitment of fungi, and that some fungi affect yield under drought. We identified candidate target genes for breeding to improve rice-fungal interactions and hence drought tolerance.

Funder

Wageningen University Fund

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3