Effects of AMF Compound Inoculants on Growth, Ion Homeostasis, and Salt Tolerance-Related Gene Expression in Oryza sativa L. Under Salt Treatments

Author:

Zhang Bo,Shi Feng,Zheng Xu,Pan Hongyang,Wen Yuqiang,Song Fuqiang

Abstract

AbstractIncreased soil salinization is among the main factors that limits safe rice production. Arbuscular mycorrhizal fungi (AMF) have been shown to alleviate the toxic effects of salt stress in plants. However, more studies on AMF combined with other functional microorganisms are needed to further improve salt tolerance in rice. Therefore, the compound inoculum Funneliformis mosseae (Fm) together with two functional microorganisms, Piriformospora indica (Pi) and Agrobacterium rhizogenes (Ar) was evaluated for their effect on the rice growth, photosynthetic gas exchange parameters, ion homeostasis, and the expression of salt tolerance-related genes under 0, 80, 120 and 160 mM salt stress conditions. The results showed that: (1) the rice seedling biomass of the AMF compound inoculant treatment group was significantly higher than that of the non-inoculation treatment group (P < 0.05); (2) under NaCl stress, inoculation with AMF compound inoculants can activate the rice antioxidant enzyme system and improve osmoregulation ability; (3) AMF compound inoculants can increase the concentration of K+ in the plant and inhibit the transfer of Na+ to rice leaves, maintaining a high K+/Na+; and (4) AMF compound inoculants could induce and regulate the overexpression of genes related to salt tolerance, photosynthesis and ion homeostasis in rice, and improve the tolerance of rice under salt stress. Our study showed that AMF compound inoculants could improve the adaptability of rice under NaCl stress and promote plant growth by regulating the photosynthetic gas exchange parameter, reactive oxygen species (ROS) scavenging ability, and ion homeostasis of plants. These results suggest that AMF compound inoculants may play an important role in improving rice productivity in salinized soil. Graphical Abstract

Funder

Heilongjiang Natural Science Foundation

Key R&D plan guidance projects in Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3