Characterization and Evaluation of Transgenic Rice Pyramided with the Pi Genes Pib, Pi25 and Pi54

Author:

Peng Meifang,Lin Xiaomin,Xiang Xiaoli,Ren Huibo,Fan Xiaoli,Chen KeguiORCID

Abstract

Abstract Background Emergence of new pathogen strains of Magnaporthe oryzae is a major reason for recurrent failure of the resistance mediated by a single resistance gene (Pi) in rice. Stacking various Pi genes in the genome through marker-assisted selection is thus an effective strategy in rice breeding for achieving durable resistance against the pathogen. However, the effect of pyramiding of multiple Pi genes using transgenesis still remains largely unknown. Results Three Pi genes Pib, Pi25 and Pi54 were transferred together into two rice varieties, the indica variety Kasalath and the japonica variety Zhenghan 10. Transgenic plants of both Kasalath and Zhenghan 10 expressing the Pi transgenes showed imparted pathogen resistance. All the transgenic lines of both cultivars also exhibited shorter growth periods with flowering 2–4 days early, and shorter plant heights with smaller panicle. Thus, pyramiding of the Pi genes resulted in reduced grain yields in both rice cultivars. However, tiller numbers and grain weight were generally similar between the pyramided lines and corresponding parents. A global analysis of gene expression by RNA-Seq suggested that both enhancement and, to a lesser extent, inhibition of gene transcription occurred in the pyramided plants. A total of 264 and 544 differentially expressed genes (DEGs) were identified in Kasalath and Zhenghan 10, respectively. Analysis of the DEGs suggested that presence of the Pi transgenes did not alter gene expression only related to disease resistance, but also impacted many gene transcriptions in the pathways for plant growth and development, in which several were common for both Kasalath and Zhenghan 10. Conclusion Pyramiding of the Pi genes Pib, Pi25 and Pi54 via transgenesis is a potentially promising approach for improving rice resistance to the pathogen Magnaporthe oryzae. However, pleiotropic effects of the Pi genes could potentially result in yield loss. These findings support the idea that immunity is often associated with yield penalties. Rational combination of the Pi genes based on the genetic background may be important to balance yield and disease resistance.

Funder

Applied Basic Research Program of Sichuan Province

Sichuan Province Science and Technology Support Program

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3