Iron Induces Resistance Against the Rice Blast Fungus Magnaporthe oryzae Through Potentiation of Immune Responses

Author:

Sánchez-Sanuy Ferran,Mateluna-Cuadra Roberto,Tomita Keisuke,Okada Kazunori,Sacchi Gian Attilio,Campo Sonia,San Segundo Blanca

Abstract

AbstractIron is an essential nutrient required for plant growth and development. The availability of iron might also influence disease resistance in plants. However, the molecular mechanisms involved in the plant response to iron availability and immunity have been investigated separately from each other. In this work, we found that exposure of rice plants to high iron enhances resistance to infection by the fungal pathogen Magnaporthe oryzae, the causal agent of blast disease. RNA-Seq analysis revealed that blast resistance in iron-treated rice plants was associated with superinduction of defense-related genes during pathogen infection, including Pathogenesis-Related genes. The expression level of genes involved in the biosynthesis of phytoalexins, both diterpene phytoalexins and the flavonoid phytoalexin sakuranetin, was also higher in iron-treated plants compared with control plants, which correlated well with increased levels of phytoalexins in these plants during M. oryzae infection. Upon pathogen infection, lipid peroxidation was also higher in iron-treated plants compared with non-treated plants. We also show that M. oryzae infection modulates the expression of genes that play a pivotal role in the maintenance of iron homeostasis. Histochemical analysis of M. oryzae-infected leaves revealed colocalization of iron and reactive oxygen species in cells located in the vicinity of fungal penetration sites (e.g. appressoria) in rice plants that have been exposed to iron. Together these findings support that ferroptosis plays a role in the response of iron-treated rice plants to infection by virulent M. oryzae. Understanding interconnected regulations between iron signaling and immune signaling in rice holds great potential for developing novel strategies to improve blast resistance in rice.

Funder

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3