Author:
Chen Zhufeng,Wu Jianxin,Deng Xing Wang,Tang Xiaoyan
Abstract
AbstractRice (Oryza sativa L.) is one of the most important food crops worldwide. The utilisation of heterosis (hybrid vigour) has played a significant role in increasing rice yield and ensuring food supply. Over the past 50 years, the first-generation three-line system based on cytoplasmic male sterility, and the second-generation two-line system based on environment-sensitive genic male sterility (EGMS), have been widely applied in hybrid rice production. However, the three-line system is restricted by the matching relationship among the three parental lines and allows only ~ 2–5% of germplasms to be explored for elite combinations. The environmental sensitivity of EGMS lines has posed serious risks to the production of hybrid seeds. These factors have hindered the development and applications of hybrid rice. Third-generation hybrid rice technology (TGHRT) is based on environment-insensitive genic male sterility, which can effectively overcome the intrinsic problems of the three-line and two-line systems. Since the establishment of TGHRT, numerous findings and innovations have been reported. This paper gives a brief review of traditional hybrid rice technologies and discusses the establishment of TGHRT, technical innovations in TGHRT, and future research that is necessary to promote the wide application of TGHRT in rice production.
Funder
the start‐up fund of Beijing Normal University at Zhuhai
National Natural Science Foundation of China
Major Program of Guangdong Basic and Applied Research
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science,Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献