Transcriptome and proteome analysis reveals the anti-cancer properties of Hypnea musciformis marine macroalga extract in liver and intestinal cancer cells

Author:

Begolli Rodiola,Chatziangelou Myrto,Samiotaki Martina,Goutas Andreas,Barda Sofia,Goutzourelas Nikolaos,Kevrekidis Dimitrios Phaedon,Malea Paraskevi,Trachana Varvara,Liu Ming,Lin Xiukun,Kollatos Nikolaos,Stagos Dimitrios,Giakountis Antonis

Abstract

Abstract Background Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. Methods H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. Results We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. Conclusions Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.

Funder

European Regional Development Fund of the European Union and Greek national funds

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3