A regulatory miRNA–mRNA network is associated with transplantation response in acute kidney injury

Author:

Guo Duan,Fan Yu,Yue Ji-RongORCID,Lin Tao

Abstract

Abstract Background Acute kidney injury (AKI) is a life-threatening complication characterized by rapid decline in renal function, which frequently occurs after transplantation surgery. However, the molecular mechanism underlying the development of post-transplant (post-Tx) AKI still remains unknown. An increasing number of studies have demonstrated that certain microRNAs (miRNAs) exert crucial functions in AKI. The present study sought to elucidate the molecular mechanisms in post-Tx AKI by constructing a regulatory miRNA–mRNA network. Results Based on two datasets (GSE53771 and GSE53769), three key modules, which contained 55 mRNAs, 76 mRNAs, and 151 miRNAs, were identified by performing weighted gene co-expression network analysis (WGCNA). The miRDIP v4.1 was applied to predict the interactions of key module mRNAs and miRNAs, and the miRNA–mRNA pairs with confidence of more than 0.2 were selected to construct a regulatory miRNA–mRNA network by Cytoscape. The miRNA–mRNA network consisted of 82 nodes (48 mRNAs and 34 miRNAs) and 125 edges. Two miRNAs (miR-203a-3p and miR-205-5p) and ERBB4 with higher node degrees compared with other nodes might play a central role in post-Tx AKI. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that this network was mainly involved in kidney-/renal-related functions and PI3K–Akt/HIF-1/Ras/MAPK signaling pathways. Conclusion We constructed a regulatory miRNA–mRNA network to provide novel insights into post-Tx AKI development, which might help discover new biomarkers or therapeutic drugs for enhancing the ability for early prediction and intervention and decreasing mortality rate of AKI after transplantation.

Funder

National Natural Science Foundation of China

1.3.5 Project For Disciplines of Excellence, West China Hospital, Sichuan University

Special Supportive Program for Organ Transplantation by COTDF

Research Funding of Sichuan Health and Family Planning Commission

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3