Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder

Author:

Krupenko Natalia I.,Sharma Jaspreet,Pediaditakis Peter,Helke Kristi L.,Hall Madeline S.,Du Xiuxia,Sumner Susan,Krupenko Sergey A.ORCID

Abstract

Abstract Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3