Author:
Vadgama Nirmal,Ameen Mohamed,Sundaram Laksshman,Gaddam Sadhana,Gifford Casey,Nasir Jamal,Karakikes Ioannis,
Abstract
Abstract
Background
Cardiomyopathies are a leading cause of progressive heart failure and sudden cardiac death; however, their genetic aetiology remains poorly understood. We hypothesised that variants in noncoding regulatory regions and oligogenic inheritance mechanisms may help close the diagnostic gap.
Methods
We first analysed whole-genome sequencing data of 143 parent–offspring trios from Genomics England 100,000 Genomes Project. We used gene panel testing and a phenotype-based, variant prioritisation framework called Exomiser to identify candidate genes in trios. To assess the contribution of noncoding DNVs to cardiomyopathies, we intersected DNVs with open chromatin sequences from single-cell ATAC-seq data of cardiomyocytes. We also performed a case–control analysis in an exome-negative cohort, including 843 probands and 19,467 controls, to assess the association between noncoding variants in known cardiomyopathy genes and disease.
Results
In the trio analysis, a definite or probable genetic diagnosis was identified in 21 probands according to the American College of Medical Genetics guidelines. We identified novel DNVs in diagnostic-grade genes (RYR2, TNNT2, PTPN11, MYH7, LZR1, NKX2-5), and five cases harbouring a combination of prioritised variants, suggesting that oligogenic inheritance and genetic modifiers contribute to cardiomyopathies. Phenotype-based ranking of candidate genes identified in noncoding DNV analysis revealed JPH2 as the top candidate. Moreover, a case–control analysis revealed an enrichment of rare noncoding variants in regulatory elements of cardiomyopathy genes (p = .035, OR = 1.43, 95% Cl = 1.095–1.767) versus controls. Of the 25 variants associated with disease (p< 0.5), 23 are novel and nine are predicted to disrupt transcription factor binding motifs.
Conclusion
Our results highlight complex genetic mechanisms in cardiomyopathies and reveal novel genes for future investigations.
Publisher
Springer Science and Business Media LLC
Subject
Drug Discovery,Genetics,Molecular Biology,Molecular Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献