A glycolysis-related two-gene risk model that can effectively predict the prognosis of patients with rectal cancer

Author:

Liu Zhenzhen,Liu Zhentao,Zhou Xin,Lu Yongqu,Yao Yanhong,Wang Wendong,Lu Siyi,Wang Bingyan,Li Fei,Fu Wei

Abstract

Abstract Background Aerobic glycolysis is an emerging hallmark of cancer. Although some studies have constructed glycolysis-related prognostic models of colon adenocarcinoma (COAD) based on The Cancer Genome Atlas (TCGA) database, whether the COAD glycolysis-related prognostic model is appropriate for distinguishing the prognosis of rectal adenocarcinoma (READ) patients remains unknown. Exploring critical and specific glycolytic genes related to READ prognosis may help us discover new potential therapeutic targets for READ patients. Results Three gene sets, HALLMARK_GLYCOLYSIS, REACTOME_GLYCOLYSIS and REACTOME_REGULATION_OF_GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM, were both significantly enriched in both COAD and READ through glycolysis-related gene set enrichment analysis (GSEA). We found that six genes (ANKZF1, STC2, SUCLG2P2, P4HA1, GPC1 and PCK1) were independent prognostic genes in COAD, while TSTA3 and PKP2 were independent prognostic genes in READ. Glycolysis-related prognostic model of COAD and READ was, respectively, constructed and assessed in COAD and READ. We found that the glycolysis-related prognostic model of COAD was not appropriate for READ, while glycolysis-related prognostic model of READ was more appropriate for READ than for COAD. PCA and t-SNE analysis confirmed that READ patients in two groups (high and low risk score groups) were distributed in discrete directions based on the glycolysis-related prognostic model of READ. We found that this model was an independent prognostic indicator through multivariate Cox analysis, and it still showed robust effectiveness in different age, gender, M stage, and TNM stage. A nomogram combining the risk model of READ with clinicopathological characteristics was established to provide oncologists with a practical tool to evaluate the rectal cancer outcomes. GO enrichment and KEGG analyses confirmed that differentially expressed genes (DEGs) were enriched in several glycolysis-related molecular functions or pathways based on glycolysis-related prognostic model of READ. Conclusions We found that a glycolysis-related prognostic model of COAD was not appropriate for READ, and we established a novel glycolysis-related two-gene risk model to effectively predict the prognosis of rectal cancer patients.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3