Next-generation sequencing profiling of miRNAs in individuals with 22q11.2 deletion syndrome revealed altered expression of miR-185-5p

Author:

Dantas Anelisa Gollo,Nunes Beatriz Carvalho,Nunes Natália,Galante Pedro,Asprino Paula Fontes,Ota Vanessa Kiyomi,Melaragno Maria Isabel

Abstract

Abstract Background The 22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with highly variable phenotypic manifestations, even though most patients present the typical 3 Mb microdeletion, usually affecting the same ~ 106 genes. One of the genes affected by this deletion is DGCR8, which plays a crucial role in miRNA biogenesis. Therefore, the haploinsufficiency of DGCR8 due to this microdeletion can alter the modulation of the expression of several miRNAs involved in a range of biological processes. Results In this study, we used next-generation sequencing to evaluate the miRNAs profiles in the peripheral blood of 12 individuals with typical 22q11DS compared to 12 healthy matched controls. We used the DESeq2 package for differential gene expression analysis and the DIANA-miTED dataset to verify the expression of differentially expressed miRNAs in other tissues. We used miRWalk to predict the target genes of differentially expressed miRNAs. Here, we described two differentially expressed miRNAs in patients compared to controls: hsa-miR-1304-3p, located outside the 22q11.2 region, upregulated in patients, and hsa-miR-185-5p, located in the 22q11.2 region, which showed downregulation. Expression of miR-185-5p is observed in tissues frequently affected in patients with 22q11DS, and previous studies have reported its downregulation in individuals with 22q11DS. hsa-miR-1304-3p has low expression in blood and, thus, needs more validation, though using a sensitive technology allowed us to identify differences in expression between patients and controls. Conclusions Thus, lower expression of miR-185-5p can be related to the 22q11.2 deletion and DGCR8 haploinsufficiency, leading to phenotypic consequences in 22q11.2DS patients, while higher expression of hsa-miR-1304-3p might be related to individual genomic variances due to the heterogeneous background of the Brazilian population.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3