Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses

Author:

Han Gang,Yan Dongyan,Sun Zhe,Fang Jiyuan,Chang Xinyue,Wilson Lucas,Liu Yushi

Abstract

Abstract Background Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive. Results Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared with other popular single cell differential expression methods if both FDR and power were considered. As an example, the method was applied to an idiopathic pulmonary fibrosis (IPF) case study. Conclusion In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.

Funder

DHHS-NIH-National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3