Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): rapid systematic review and field synopsis

Author:

Di Maria EmilioORCID,Latini Andrea,Borgiani Paola,Novelli Giuseppe

Abstract

AbstractThe COVID-19 pandemic has strengthened the interest in the biological mechanisms underlying the complex interplay between infectious agents and the human host. The spectrum of phenotypes associated with the SARS-CoV-2 infection, ranging from the absence of symptoms to severe systemic complications, raised the question as to what extent the variable response to coronaviruses (CoVs) is influenced by the variability of the hosts’ genetic background.To explore the current knowledge about this question, we designed a systematic review encompassing the scientific literature published from Jan. 2003 to June 2020, to include studies on the contemporary outbreaks caused by SARS-CoV-1, MERS-CoV and SARS-CoV-2 (namely SARS, MERS and COVID-19 diseases). Studies were eligible if human genetic variants were tested as predictors of clinical phenotypes.An ad hoc protocol for the rapid review process was designed according to the PRISMA paradigm and registered at the PROSPERO database (ID: CRD42020180860). The systematic workflow provided 32 articles eligible for data abstraction (28 on SARS, 1 on MERS, 3 on COVID-19) reporting data on 26 discovery cohorts. Most studies considered the definite clinical diagnosis as the primary outcome, variably coupled with other outcomes (severity was the most frequently analysed). Ten studies analysed HLA haplotypes (1 in patients with COVID-19) and did not provide consistent signals of association with disease-associated phenotypes. Out of 22 eligible articles that investigated candidate genes (2 as associated with COVID-19), the top-ranked genes in the number of studies were ACE2, CLEC4M (L-SIGN), MBL, MxA (n = 3), ACE, CD209, FCER2, OAS-1, TLR4, TNF-α (n = 2). Only variants in MBL and MxA were found as possibly implicated in CoV-associated phenotypes in at least two studies. The number of studies for each predictor was insufficient to conduct meta-analyses.Studies collecting large cohorts from different ancestries are needed to further elucidate the role of host genetic variants in determining the response to CoVs infection. Rigorous design and robust statistical methods are warranted.

Funder

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Bases and Specificity behind the Activation of the Immune System OAS/RNAse L Pathway by Viral RNA;Viruses;2024-08-02

2. Genomic Landscape of Susceptibility to Severe COVID-19 in the Slovenian Population;International Journal of Molecular Sciences;2024-07-12

3. Decoding SARS-CoV-2 Variants: An in-silico approach to RNA-Seq feature extraction using K-mers and N-grams;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

4. QUALITY OF LIFE OF PATIENTS AFTER SUFFERING FROM CORONA VIRUS DISEASE (COVID-19);Bulletin of Problems Biology and Medicine;2024

5. Sensory disorders, neuroinflammation, and COVID-19;Linking Neuroscience and Behavior in COVID-19;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3