Abstract
AbstractMeasures of cognitive or socio-emotional skills from large-scale assessments surveys (LSAS) are often based on advanced statistical models and scoring techniques unfamiliar to applied researchers. Consequently, applied researchers working with data from LSAS may be uncertain about the assumptions and computational details of these statistical models and scoring techniques and about how to best incorporate the resulting skill measures in secondary analyses. The present paper is intended as a primer for applied researchers. After a brief introduction to the key properties of skill assessments, we give an overview over the three principal methods with which secondary analysts can incorporate skill measures from LSAS in their analyses: (1) as test scores (i.e., point estimates of individual ability), (2) through structural equation modeling (SEM), and (3) in the form of plausible values (PVs). We discuss the advantages and disadvantages of each method based on three criteria: fallibility (i.e., control for measurement error and unbiasedness), usability (i.e., ease of use in secondary analyses), and immutability (i.e., consistency of test scores, PVs, or measurement model parameters across different analyses and analysts). We show that although none of the methods are optimal under all criteria, methods that result in a single point estimate of each respondent’s ability (i.e., all types of “test scores”) are rarely optimal for research purposes. Instead, approaches that avoid or correct for measurement error—especially PV methodology—stand out as the method of choice. We conclude with practical recommendations for secondary analysts and data-producing organizations.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Reference84 articles.
1. Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42(1), 69–81. https://doi.org/10.1007/BF02293746.
2. Anderson, J., & Gerbing, D. W. (1992). Assumptions and comparative strengths of the two-step approach: Comment on Fornell and Yi. Sociological Methods and Research, 20(3), 321–333. https://doi.org/10.1177/0049124192020003002.
3. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. https://doi.org/10.1037/0033-2909.103.3.411.
4. Asparouhov, T. & Muthén, B. (2010). Plausible values for latent variables using Mplus. Mplus Technical Report. http://statmodel.com/download/Plausible.pdf
5. Avvisati, F., & Keslair, F. (2020). REPEST: Stata module to run estimations with weighted replicate samples and plausible values. Retrieved from https://econpapers.repec.org/software/bocbocode/S457918.htm
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献