Author:
Chen Tzu-Ling,Chen Shin,Wu Hsiu-Wei,Lee Tsung-Chun,Lu Yen-Zhen,Wu Li-Ling,Ni Yen-Hsuan,Sun Chin-Hung,Yu Wei-Hsuan,Buret Andre G,Yu Linda Chia-Hui
Abstract
Abstract
Background
Recent studies of Giardia lamblia outbreaks have indicated that 40–80% of infected patients experience long-lasting functional gastrointestinal disorders after parasitic clearance. Our aim was to assess changes in the intestinal barrier and spatial distribution of commensal bacteria in the post-clearance phase of Giardia infection.
Methods
Mice were orogastrically inoculated with G. lamblia trophozoites (strain GS/M) or pair-fed with saline and were sacrificed on post-infective (PI) days 7 (colonization phase) and 35 (post-clearance phase). Gut epithelial barrier function was assessed by Western blotting for occludin cleavage and luminal-to-serosal macromolecular permeability. Gut-associated, superficial adherent, and mucosal endocytosed bacteria were measured by agar culturing and were examined by fluorescence in situ hybridization. Intracellular bacteria cultured from isolated mucosal cells were characterized by 16S rDNA sequencing. Neutrophil-specific esterase staining, a myeloperoxidase activity assay, and enzyme-linked immunosorbent assays for cytokine concentrations were used to verify intestinal tissue inflammation.
Results
Tight junctional damage was detected in the intestinal mucosa of Giardia-infected mice on PI days 7 and 35. Although intestinal bacterial overgrowth was evident only during parasite colonization (PI day 7), enhanced mucosal adherence and endocytosis of bacteria were observed on PI days 7 and 35. Multiple bacterial strains, including Bacillus, Lactobacillus, Staphylococcus, and Phenylobacterium, penetrated the gut mucosa in the post-infective phase. The mucosal influx of bacteria coincided with increases in neutrophil infiltration and myeloperoxidase activity on PI days 7 and 35. Elevated intestinal IFNγ, TNFα, and IL-1β levels also were detected on PI day 35.
Conclusions
Giardia-infected mice showed persistent tight junctional damage and bacterial penetration, accompanied by mucosal inflammation, after parasite clearance. These novel findings suggest that the host’s unresolved immune reactions toward its own microbiota, due to an impaired epithelial barrier, may partly contribute to the development of post-infective gut disorders.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology
Reference54 articles.
1. Spiller R, Garsed K: Postinfectious irritable bowel syndrome. Gastroenterology. 2009, 136 (6): 1979-1988. 10.1053/j.gastro.2009.02.074.
2. Cotton JA, Beatty JK, Buret AG: Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol. 2011, 41 (9): 925-933. 10.1016/j.ijpara.2011.05.002.
3. Hanevik K, Dizdar V, Langeland N, Hausken T: Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterol. 2009, 9: 27-10.1186/1471-230X-9-27.
4. Dizdar V, Gilja OH, Hausken T: Increased visceral sensitivity in Giardia-induced postinfectious irritable bowel syndrome and functional dyspepsia. Effect of the 5HT3-antagonist ondansetron. Neurogastroenterol Motil. 2007, 19 (12): 977-982.
5. Morch K, Hanevik K, Rortveit G, Wensaas KA, Langeland N: High rate of fatigue and abdominal symptoms 2 years after an outbreak of giardiasis. Trans R Soc Trop Med Hyg. 2009, 103 (5): 530-532. 10.1016/j.trstmh.2009.01.010.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献