Author:
Costa Estela,Uwiera Richard RE,Kastelic John P,Selinger L Brent,Inglis G Douglas
Abstract
Abstract
Background
The development of efficacious alternatives to antimicrobial growth promoters (AGP) in livestock production is an urgent issue, but is hampered by a lack of knowledge regarding the mode of action of AGP. The belief that AGP modulate the intestinal microbiota has become prominent in the literature; however, there is a lack of experimental evidence to support this hypothesis. Using a chlortetracycline-murine-Citrobacter rodentium model, the ability of AGP to modulate the intestinal immune system in mammals was investigated.
Results
C. rodentium was transformed with the tetracycline resistance gene, tet O, and continuous oral administration of a non-therapeutic dose of chlortetracycline to mice did not affect densities of C. rodentium CFU in feces throughout the experiment or associated with mucosal surfaces in the colon (i.e. at peak and late infection). However, chlortetracycline regulated transcription levels of Th1 and Th17 inflammatory cytokines in a temporal manner in C. rodentium-inoculated mice, and ameliorated weight loss associated with infection. In mice inoculated with C. rodentium, those that received chlortetracycline had less pathologic changes in the distal colon than mice not administered CTC (i.e. relative to untreated mice). Furthermore, chlortetracycline administration at a non-therapeutic dose did not impart either prominent or consistent effects on the colonic microbiota.
Conclusion
Data support the hypothesis that AGP function by modulating the intestinal immune system in mammals. This finding may facilitate the development of biorationale-based and efficacious alternatives to AGP.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology
Reference64 articles.
1. Moore PR, Evenson A: Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J Biol Chem. 1946, 165: 437-441.
2. Khachatourians GG: Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. CMAJ. 1998, 159: 1129-1136.
3. Conly J: Antimicrobial resistance in Canada. CMAJ. 2002, 167: 885-891.
4. Funk JA, Lejeune JT, Wittum TE, Rajala-Schultz PJ: The effect of subtherapeutic chlortetracycline on antimicrobial resistance in the fecal flora of swine. Microb Drug Resist. 2006, 12: 210-218. 10.1089/mdr.2006.12.210.
5. Inglis GD, McAllister TA, Busz HW, Yanke LJ, Morck DW, Olson ME, Read RR: Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni and Campylobacter hyointestinalis. Appl Environ Microbiol. 2005, 71: 3872-3881. 10.1128/AEM.71.7.3872-3881.2005.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献