Detection of fickle trolls in large-scale online social networks

Author:

Shafiei Hossein,Dadlani AreshORCID

Abstract

AbstractOnline social networks have attracted billions of active users over the past decade. These systems play an integral role in the everyday life of many people around the world. As such, these platforms are also attractive for misinformation, hoaxes, and fake news campaigns which usually utilize social trolls and/or social bots for propagation. Detection of so-called social trolls in these platforms is challenging due to their large scale and dynamic nature where users’ data are generated and collected at the scale of multi-billion records per hour. In this paper, we focus on fickle trolls, i.e., a special type of trolling activity in which the trolls change their identity frequently to maximize their social relations. This kind of trolling activity may become irritating for the users and also may pose a serious threat to their privacy. To the best of our knowledge, this is the first work that introduces mechanisms to detect these trolls. In particular, we discuss and analyze troll detection mechanisms on different scales. We prove that the order of centralized single-machine detection algorithm is $$O(n^3)$$ O ( n 3 ) which is slow and impractical for early troll detection in large-scale social platforms comprising of billions of users. We also prove that the streaming approach where data is gradually fed to the system is not practical in many real-world scenarios. In light of such shortcomings, we then propose a massively parallel detection approach. Rigorous evaluations confirm that our proposed method is at least six times faster compared to conventional parallel approaches.

Funder

Nazarbayev University

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Fake Profile Detection: A Machine Learning Perspective;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. GPU-accelerated relaxed graph pattern matching algorithms;The Journal of Supercomputing;2024-06-16

3. Comparing Deep Learning and Traditional ML for Detecting Spam and Trolls on Video Sharing Sites;2023 6th International Conference on Contemporary Computing and Informatics (IC3I);2023-09-14

4. Lying in online social networks: a bug or a feature;Journal of Information, Communication and Ethics in Society;2023-07-17

5. HATDO: hybrid Archimedes Tasmanian devil optimization CNN for classifying offensive comments and non-offensive comments;Neural Computing and Applications;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3