Using machine learning techniques to predict the cost of repairing hard failures in underground fiber optics networks

Author:

Nyarko-Boateng OwusuORCID,Adekoya Adebayo Felix,Weyori Benjamin Asubam

Abstract

AbstractFiber optics cable has been adopted by telecommunication companies worldwide as the primary medium of transmission. The cable is steadily replacing long-haul microwave, copper cable, and satellite transmissions systems. Fiber cable has been deployed in an underground, submarine, and aerial architecture to transmit high-speed signals in intercontinental, inter countries, inter cities and intra-cities. Underground fiber cable transmission has experienced major failures as compared to other mediums of fiber transmission infrastructure. The failure is rampant, and especially the cable get cuts frequently in areas where there are road constructions, road road expansion projects, and other developmental projects. The cost of repairing these failures is enormous, and it largely depends on the cause of failure and the geographical area the faults occurred. The main aim of this paper was to investigate the cost of repairing underground fiber cable failures, clustered the cause of faults, and then used feedforward neural networks (FFNN) and linear regression to predict the cost of repairing future faults. The result of the predictive model is significant to the telecommunications industry, which means the cost of repairing an underground optical networks will be known to the industry players before the fault occurs. depending on which area, the cause of the failure and the mean time to repair (MTTR), the predictive model tells the mobile network operators the cost involved to repair the damaged cable. The accuracy of the result obtained indicates the predictive model is good for predicting the cost of repairing fiber cable cut in underground optical networks.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3