A new deep learning architecture with inductive bias balance for transformer oil temperature forecasting

Author:

Jiménez-Navarro Manuel J.,Martínez-Ballesteros María,Martínez-Álvarez Francisco,Asencio-Cortés Gualberto

Abstract

AbstractEnsuring the optimal performance of power transformers is a laborious task in which the insulation system plays a vital role in decreasing their deterioration. The insulation system uses insulating oil to control temperature, as high temperatures can reduce the lifetime of the transformers and lead to expensive maintenance. Deep learning architectures have been demonstrated remarkable results in various fields. However, this improvement often comes at the cost of increased computing resources, which, in turn, increases the carbon footprint and hinders the optimization of architectures. In this study, we introduce a novel deep learning architecture that achieves a comparable efficacy to the best existing architectures in transformer oil temperature forecasting while improving efficiency. Effective forecasting can help prevent high temperatures and monitor the future condition of power transformers, thereby reducing unnecessary waste. To balance the inductive bias in our architecture, we propose the Smooth Residual Block, which divides the original problem into multiple subproblems to obtain different representations of the time series, collaboratively achieving the final forecasting. We applied our architecture to the Electricity Transformer datasets, which obtain transformer insulating oil temperature measures from two transformers in China. The results showed a 13% improvement in MSE and a 57% improvement in performance compared to the best current architectures, to the best of our knowledge. Moreover, we analyzed the architecture behavior to gain an intuitive understanding of the achieved solution.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancement in transformer fault diagnosis technology;Frontiers in Energy Research;2024-07-22

2. Embedded feature selection for neural networks via learnable drop layer;Logic Journal of the IGPL;2024-06-07

3. Explaining deep learning models for ozone pollution prediction via embedded feature selection;Applied Soft Computing;2024-05

4. Efficient Short-Term Time Series Forecasting with Regression Trees;18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3