Chronic kidney disease prediction using machine learning techniques

Author:

Debal Dibaba Adeba,Sitote Tilahun Melak

Abstract

AbstractGoal three of the UN’s Sustainable Development Goal is good health and well-being where it clearly emphasized that non-communicable diseases is emerging challenge. One of the objectives is to reduce premature mortality from non-communicable disease by third in 2030. Chronic kidney disease (CKD) is among the significant contributor to morbidity and mortality from non-communicable diseases that can affected 10–15% of the global population. Early and accurate detection of the stages of CKD is believed to be vital to minimize impacts of patient’s health complications such as hypertension, anemia (low blood count), mineral bone disorder, poor nutritional health, acid base abnormalities, and neurological complications with timely intervention through appropriate medications. Various researches have been carried out using machine learning techniques on the detection of CKD at the premature stage. Their focus was not mainly on the specific stages prediction. In this study, both binary and multi classification for stage prediction have been carried out. The prediction models used include Random Forest (RF), Support Vector Machine (SVM) and Decision Tree (DT). Analysis of variance and recursive feature elimination using cross validation have been applied for feature selection. Evaluation of the models was done using tenfold cross-validation. The results from the experiments indicated that RF based on recursive feature elimination with cross validation has better performance than SVM and DT.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference36 articles.

1. Radhakrishnan J, Mohan S. KI Reports and World Kidney Day. Kidney Int Reports. 2017;2(2):125–6.

2. George C, Mogueo A, Okpechi I, Echouffo-Tcheugui JB, Kengne AP. Chronic kidney disease in low-income to middle-income countries: The case f increased screening. BMJ Glob Heal. 2017;2(2):1–10.

3. Ethiopia: kidney disease. https://www.worldlifeexpectancy.com/ethiopia-kidney-disease. Accessed 07 Feb 2020.

4. Stanifer JW, et al. The epidemiology of chronic kidney disease in sub-Saharan Africa: A systematic review and meta-analysis. Lancet Glob Heal. 2014;2(3):e174–81.

5. AbdElhafeez S, Bolignano D, D’Arrigo G, Dounousi E, Tripepi G, Zoccali C. Prevalence and burden of chronic kidney disease among the general population and high-risk groups in Africa: A systematic review. BMJ Open. 2018;8:1.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3