Discovering top-weighted k-truss communities in large graphs

Author:

Habib Wafaa M. A.,Mokhtar Hoda M. O.,El-Sharkawi Mohamed E.

Abstract

AbstractCommunity Search is the problem of querying networks in order to discover dense subgraphs-communities-that satisfy given query parameters. Most community search models consider link structure and ignore link weight while answering the required queries. Given the importance of link weight in different networks, this paper considers both link structure and link weight to discover top-r weighted k-truss communities via community search. The top-weighted k-truss communities are those communities with the highest weight and the highest cohesiveness within the network. All recent studies that considered link weight discover top-weighted communities via global search and index-based search techniques. In this paper three different algorithms are proposed to scale-up the existing approaches of weighted community search via local search. The performance evaluation shows that the proposed algorithms significantly outperform the existing state-of-the-art algorithms over different datasets in terms of search time by several orders of magnitude.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Truss Maximization on Large Graphs: A Minimum Cut Approach;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in Large Graphs;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

3. Co-Engaged Location Group Search in Location-Based Social Networks;IEEE Transactions on Knowledge and Data Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3