MuSe: a multi-level storage scheme for big RDF data using MapReduce

Author:

Chawla Tanvi,Singh Girdhari,Pilli Emmanuel S.ORCID

Abstract

AbstractResource Description Framework (RDF) model owing to its flexible structure is increasingly being used to represent Linked data. The rise in amount of Linked data and Knowledge graphs has resulted in an increase in the volume of RDF data. RDF is used to model metadata especially for social media domains where the data is linked. With the plethora of RDF data sources available on the Web, scalable RDF data management becomes a tedious task. In this paper, we present MuSe—an efficient distributed RDF storage scheme for storing and querying RDF data with Hadoop MapReduce. In MuSe, the Big RDF data is stored at two levels for answering the common triple patterns in SPARQL queries. MuSe considers the type of frequently occuring triple patterns and optimizes RDF storage to answer such triple patterns in minimum time. It accesses only the tables that are sufficient for answering a triple pattern instead of scanning the whole RDF dataset. The extensive experiments on two synthetic RDF datasets i.e. LUBM and WatDiv, show that MuSe outperforms the compared state-of-the art frameworks in terms of query execution time and scalability.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3