Automatic diagnosis of keratitis using object localization combined with cost-sensitive deep attention convolutional neural network

Author:

Jiang Jiewei,Liu Wei,Pei Mengjie,Guo Liufei,Yang Jingshi,Wu Chengchao,Lu Jiaojiao,Gao Ruijie,Chen Wei,Gong Jiamin,Zhu Mingmin,Li Zhongwen

Abstract

AbstractKeratitis is a major cause of corneal blindness worldwide. Early identification and timely treatment of keratitis can deter the disease progression, reaching a better prognosis. The diagnosis of keratitis often requires professional ophthalmologists. However, ophthalmologists are relatively scarce and unevenly distributed, especially in underserved and remote regions, making the early diagnosis of keratitis challenging. In this study, an object localization method combined with cost-sensitive deep attention convolutional neural network (OL-CDACNN) was proposed for the automated diagnosis of keratitis. First, the single shot multibox detector (SSD) algorithm was employed to automatically locate the region of conjunctiva and cornea (Conj_Cor) on the original slit-lamp image. Then, the region of Conj_Cor was classified using a cost-sensitive deep attention convolutional network (CDACNN) to identify keratitis, other cornea abnormalities, and normal cornea. A total of 12,407 slit-lamp images collected from four clinical institutions were used to develop and evaluate the OL-CDACNN. For detecting keratitis, other cornea abnormalities, and normal cornea, the OL-CDACNN model achieved area under the receiver operating characteristic curves (AUCs) of 0.998, 0.997, and 1.000, respectively, in an internal test dataset. The comparable performance (AUCs ranged from 0.981 to 0.998) was observed in three external test datasets, further verifying its effectiveness and generalizability. Due to reliable performance, our model has a high potential to provide an accurate diagnosis and prompt referral for a patient with keratitis in an automated fashion.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Postgraduate Innovation Fund of Xi'an University of Posts and Telecommunications

International Science and Technology Cooperation Program Project Shaanxi Province Key Research and Development Program

Natural Science Foundation of Zhejiang Province

Medical Science and Technology Project of Zhejiang Province

Ningbo Science & technology program

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3