Accelerating neural network training with distributed asynchronous and selective optimization (DASO)

Author:

Coquelin DanielORCID,Debus Charlotte,Götz Markus,von der Lehr Fabrice,Kahn James,Siggel Martin,Streit Achim

Abstract

AbstractWith increasing data and model complexities, the time required to train neural networks has become prohibitively large. To address the exponential rise in training time, users are turning to data parallel neural networks (DPNN) and large-scale distributed resources on computer clusters. Current DPNN approaches implement the network parameter updates by synchronizing and averaging gradients across all processes with blocking communication operations after each forward-backward pass. This synchronization is the central algorithmic bottleneck. We introduce the distributed asynchronous and selective optimization (DASO) method, which leverages multi-GPU compute node architectures to accelerate network training while maintaining accuracy. DASO uses a hierarchical and asynchronous communication scheme comprised of node-local and global networks while adjusting the global synchronization rate during the learning process. We show that DASO yields a reduction in training time of up to 34% on classical and state-of-the-art networks, as compared to current optimized data parallel training methods.

Funder

Helmholtz-Gemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference43 articles.

1. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

2. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention Is All You Need. [accessed on 2021-08-06] (2017). arXiv:1706.03762.

3. Ben-Nun T, Hoefler T. Demystifying parallel and distributed deep learning: an in-depth concurrency analysis. ACM Comput Survey. 2019;52(4):1–43. https://doi.org/10.1145/3320060.

4. Lee S, Purushwalkam S, Cogswell M, et al. Why M heads are better than one: Training a diverse ensemble of deep networks. CoRR (2015). arXiv:1511.06314.

5. Krizhevsky A. One weird trick for parallelizing convolutional neural networks. CoRR abs/1404.5997 (2014). arXiv:1404.5997.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PETNet–Coincident Particle Event Detection using Spiking Neural Networks;2024 Neuro Inspired Computational Elements Conference (NICE);2024-04-23

2. Deep-Learning-Based 3-D Surface Reconstruction—A Survey;Proceedings of the IEEE;2023-11

3. Deep learning approaches to building rooftop thermal bridge detection from aerial images;Automation in Construction;2023-02

4. Enhancing Distributed Neural Network Training Through Node-Based Communications;IEEE Transactions on Neural Networks and Learning Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3