A data value metric for quantifying information content and utility

Author:

Noshad Morteza,Choi Jerome,Sun Yuming,Hero Alfred,Dinov Ivo D.ORCID

Abstract

AbstractData-driven innovation is propelled by recent scientific advances, rapid technological progress, substantial reductions of manufacturing costs, and significant demands for effective decision support systems. This has led to efforts to collect massive amounts of heterogeneous and multisource data, however, not all data is of equal quality or equally informative. Previous methods to capture and quantify the utility of data include value of information (VoI), quality of information (QoI), and mutual information (MI). This manuscript introduces a new measure to quantify whether larger volumes of increasingly more complex data enhance, degrade, or alter their information content and utility with respect to specific tasks. We present a new information-theoretic measure, called Data Value Metric (DVM), that quantifies the useful information content (energy) of large and heterogeneous datasets. The DVM formulation is based on a regularized model balancing data analytical value (utility) and model complexity. DVM can be used to determine if appending, expanding, or augmenting a dataset may be beneficial in specific application domains. Subject to the choices of data analytic, inferential, or forecasting techniques employed to interrogate the data, DVM quantifies the information boost, or degradation, associated with increasing the data size or expanding the richness of its features. DVM is defined as a mixture of a fidelity and a regularization terms. The fidelity captures the usefulness of the sample data specifically in the context of the inferential task. The regularization term represents the computational complexity of the corresponding inferential method. Inspired by the concept of information bottleneck in deep learning, the fidelity term depends on the performance of the corresponding supervised or unsupervised model. We tested the DVM method for several alternative supervised and unsupervised regression, classification, clustering, and dimensionality reduction tasks. Both real and simulated datasets with weak and strong signal information are used in the experimental validation. Our findings suggest that DVM captures effectively the balance between analytical-value and algorithmic-complexity. Changes in the DVM expose the tradeoffs between algorithmic complexity and data analytical value in terms of the sample-size and the feature-richness of a dataset. DVM values may be used to determine the size and characteristics of the data to optimize the relative utility of various supervised or unsupervised algorithms.

Funder

National Science Foundation

National Institutes of Health

Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3