Dissimilarity space reinforced with manifold learning and latent space modeling for improved pattern classification

Author:

Rezazadeh Hamedani Azadeh,Moattar Mohammad HosseinORCID,Forghani Yahya

Abstract

AbstractDissimilarity representation plays a very important role in pattern recognition due to its ability to capture structural and relational information between samples. Dissimilarity space embedding is an approach in which each sample is represented as a vector based on its dissimilarity to some other samples called prototypes. However, lack of neighborhood-preserving, fixed and usually considerable prototype set for all training samples cause low classification accuracy and high computational complexity. To address these challenges, our proposed method creates dissimilarity space considering the neighbors of each data point on the manifold. For this purpose, Locally Linear Embedding (LLE) is used as an unsupervised manifold learning algorithm. The only goal of this step is to learn the global structure and the neighborhood of data on the manifold and mapping or dimension reduction is not performed. In order to create the dissimilarity space, each sample is compared only with its prototype set including its k-nearest neighbors on the manifold using the geodesic distance metric. Geodesic distance metric is used for the structure preserving and is computed using the weighted LLE neighborhood graph. Finally, Latent Space Model (LSM), is applied to reduce the dimensions of the Euclidean latent space so that the second challenge is resolved. To evaluate the resulted representation ad so called dissimilarity space, two common classifiers namely K Nearest Neighbor (KNN) and Support Vector Machine (SVM) are applied. Experiments on different datasets which included both Euclidean and non-Euclidean spaces, demonstrate that using the proposed approach, classifiers outperform the other basic dissimilarity spaces in both accuracy and runtime.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3