Author:
Ataei Pouya,Staegemann Daniel
Abstract
AbstractThe panorama of data is ever evolving, and big data has emerged to become one of the most hyped terms in the industry. Today, users are the perpetual producers of data that if gleaned and crunched, have the potential to reveal game-changing patterns. This has introduced an important shift regarding the role of data in organizations and many strive to harness to power of this new material. Howbeit, institutionalizing data is not an easy task and requires the absorption of a great deal of complexity. According to the literature, it is estimated that only 13% of organizations succeeded in delivering on their data strategy. Among the root challenges, big data system development and data architecture are prominent. To this end, this study aims to facilitate data architecture and big data system development by applying well-established patterns of microservices architecture to big data systems. This objective is achieved by two systematic literature reviews, and infusion of results through thematic synthesis. The result of this work is a series of theories that explicates how microservices patterns could be useful for big data systems. These theories are then validated through expert opinion gathering with 7 experts from the industry. The findings emerged from this study indicates that big data architectures can benefit from many principles and patterns of microservices architecture.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Reference51 articles.
1. Davenport TH, Bean R. Davenport TH, Bean R, editors. Big data and AI executive survey 2021. NewVantage Partners; 2022. https://www.newvantage.com/thoughtleadership.
2. MIT Technology Review Insights. (2021). AI and the future of work: Adopt or be left behind. Retrieved from https://www.databricks.com/resources/whitepaper/mit-technology-review-insights-report.
3. Freymann A, Maier F, Schaefer K, Böhnel T. Tackling the six fundamental challenges of big data in research projects by utilizing a scalable and modular architecture. In: IoTBDS; 2020. p. 249–256.
4. Richardson C. Richardson C, editor. A pattern language for microservices. https://microservices.io; 2022. https://microservices.io/patterns/index.html.
5. Ataei P, Litchfield A. The state of big data reference architectures: a systematic literature review. IEEE Access. 2022;10.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献