Composition of weighted finite transducers in MapReduce

Author:

Elghadyry BilalORCID,Ouardi Faissal,Verel Sébastien

Abstract

AbstractWeighted finite-state transducers have been shown to be a general and efficient representation in many applications such as text and speech processing, computational biology, and machine learning. The composition of weighted finite-state transducers constitutes a fundamental and common operation between these applications. The NP-hardness of the composition computation problem presents a challenge that leads us to devise efficient algorithms on a large scale when considering more than two transducers. This paper describes a parallel computation of weighted finite transducers composition in MapReduce framework. To the best of our knowledge, this paper is the first to tackle this task using MapReduce methods. First, we analyze the communication cost of this problem using Afrati et al. model. Then, we propose three MapReduce methods based respectively on input alphabet mapping, state mapping, and hybrid mapping. Finally, intensive experiments on a wide range of weighted finite-state transducers are conducted to compare the proposed methods and show their efficiency for large-scale data.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference34 articles.

1. Culik K II, Friš I. Weighted finite transducers in image processing. Discrete Appl Math. 1995;58(3):223–37.

2. Hofer J, Stemmer G. Optimizations to decoding of WFST models for automatic speech recognition. Google Patents. US Patent 10,127,902; 2018.

3. Blackwood G, De Gispert A, Brunning J, Byrne W. Large-scale statistical machine translation with weighted finite state transducers. In: Proceeding of the 2009 conference on finite-state methods and natural language processing; 2009. p. 39–49.

4. Tao R. Finite automata and application to cryptography. Berlin: Springer; 2008.

5. Roche-Lima A, Domaratzki M, Fristensky B. Pairwise rational kernels obtained by automaton operations. In: International conference on implementation and application of automata; 2014. p. 332–45.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3