Deep learning for component fault detection in electricity transmission lines

Author:

Maduako IykeORCID,Igwe Chukwuemeka Fortune,Abah James Edebo,Onwuasaanya Obianuju Esther,Chukwu Grace Amarachi,Ezeji Franklin,Okeke Francis Ifeanyi

Abstract

AbstractComponent fault detection and inventory are one of the most significant bottlenecks facing the electricity transmission and distribution utility establishments especially in developing countries for delivery of efficient services to the customers and to ensure proper asset audit and management for network optimization and load forecasting. For lack of technology and data, insecurity, the complexity associated with traditional methods, untimeliness, and general human cost, electricity assets monitoring, and management have remained a big problem in many developing countries. In view of this, we explored the use of oblique UAV imagery with high spatial resolution and fine-tuned deep Convolutional Neural Networks (CNNs) for automatic faulty component inspection and inventory in an Electric power transmission network (EPTN). This study investigated the capability of the Single Shot Multibox Detector (SSD), a one-stage object detection model on the electric transmission power line imagery to localize, detect and classify faults. Our proposed neural network model is a CNN based on a multiscale layer feature pyramid network (FPN) using aerial image patches and ground truth to localise and detect faults through a one-phase procedure. The SSD Rest50 architecture variation performed the best with a mean Average Precision (mAP) of 89.61%. All the developed SSD-based models achieve a high precision rate and low recall rate in detecting faulty components, thus achieving acceptable balance levels of F1-score and representation. We have established in this paper that combined use of UAV imagery and computer vision presents a low-cost method for easy and timely electricity asset inventory, especially in developing countries. This study also provides the guide to various considerations when adopting this technology in terms of the choice of deep learning architecture, adequate training samples over multiple fault characteristics, effects of data augmentation, and balancing of intra-class heterogeneity.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3