A predictive noise correction methodology for manufacturing process datasets

Author:

Oleghe OmogbaiORCID

Abstract

AbstractIn manufacturing processes, datasets intended for data driven decisions are majorly generated from time-sequenced sensor readings. Industrial sensor systems are prone to transmit inaccurate readings, which result in noisy datasets. Noisy datasets inhibit machine learning and knowledge discovery. Using a multi-stage, multi-output process dataset as an experimental case, this article reports a methodology for replacing erroneous sensor values with their predicted likely values. In the methodology, invalid values specified by process owners are first converted to missing values. Then, ReliefF algorithm is used to select the most relevant features to progress for prediction modelling, and also to boost the performance of the prediction model. A Random Forest classifier model is built to predict replacement values for the missing values. Finally, predicted values are inserted into the dataset to fill in the missing entries. With many attributes having a significant number of erroneous values, the invalid values replacement is done one attribute at a time. To do this systematically, the process flow direction and stages in the manufacturing process are exploited to partition the dataset into subsets for model building. The results indicate that the methodology is able to replace erroneous values with likely true values, to a very high degree of accuracy. There is a paucity of this type of methodology for dealing with invalid entries in process datasets. The methodology is useful for both missing and invalid value correction in process datasets. In the future, the plan is to inject the prediction models into streaming data to simultaneously enable erroneous value correction and predictive process monitoring in real-time.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference65 articles.

1. Shao J, et al. Automatic weld defect detection based on potential defect tracking in real-time radiographic image sequence. NDT and E Int. 2012;46:14–21.

2. Kim S. et al. Dealing with noise in defect prediction. In: 2011 33rd International Conference on Software Engineering (ICSE). IEEE. 2011.

3. Kaggle. Multi-Stage Continuous-Flow Manufacturing Process. 2020. https://www.kaggle.com/supergus/multistage-continuousflow-manufacturing-process. Accessed 20 Mar 2020]

4. Müller H, Freytag J-C, Problems, methods, and challenges in comprehensive data cleansing. Professoren des Inst. Für Informatik. 2005.

5. Peres RS, et al. Multistage quality control using machine learning in the automotive industry. IEEE Access. 2019;7:79908–16.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3