Survey on categorical data for neural networks

Author:

Hancock John T.,Khoshgoftaar Taghi M.

Abstract

AbstractThis survey investigates current techniques for representing qualitative data for use as input to neural networks. Techniques for using qualitative data in neural networks are well known. However, researchers continue to discover new variations or entirely new methods for working with categorical data in neural networks. Our primary contribution is to cover these representation techniques in a single work. Practitioners working with big data often have a need to encode categorical values in their datasets in order to leverage machine learning algorithms. Moreover, the size of data sets we consider as big data may cause one to reject some encoding techniques as impractical, due to their running time complexity. Neural networks take vectors of real numbers as inputs. One must use a technique to map qualitative values to numerical values before using them as input to a neural network. These techniques are known as embeddings, encodings, representations, or distributed representations. Another contribution this work makes is to provide references for the source code of various techniques, where we are able to verify the authenticity of the source code. We cover recent research in several domains where researchers use categorical data in neural networks. Some of these domains are natural language processing, fraud detection, and clinical document automation. This study provides a starting point for research in determining which techniques for preparing qualitative data for use with neural networks are best. It is our intention that the reader should use these implementations as a starting point to design experiments to evaluate various techniques for working with qualitative data in neural networks. The third contribution we make in this work is a new perspective on techniques for using categorical data in neural networks. We organize techniques for using categorical data in neural networks into three categories. We find three distinct patterns in techniques that identify a technique as determined, algorithmic, or automated. The fourth contribution we make is to identify several opportunities for future research. The form of the data that one uses as an input to a neural network is crucial for using neural networks effectively. This work is a tool for researchers to find the most effective technique for working with categorical data in neural networks, in big data settings. To the best of our knowledge this is the first in-depth look at techniques for working with categorical data in neural networks.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference84 articles.

1. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.

2. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.

3. Cheng G, Berkhahn F. Entity embeddings of categorical variables. CoRR. 2016. arXiv:1604.06737.

4. Lacey M. Categorical data. 2019. http://www.stat.yale.edu/Courses/1997-98/101/catdat.htm. Accessed 23 Sept 2019.

5. Lane DM. Online statistics education: an interactive multimedia course of study. 2019. http://onlinestatbook.com/2/index.html. Accessed 15 Dec 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3