Normalization and outlier removal in class center-based firefly algorithm for missing value imputation

Author:

Nugroho HeruORCID,Utama Nugraha Priya,Surendro Kridanto

Abstract

AbstractA missing value is one of the factors that often cause incomplete data in almost all studies, even those that are well-designed and controlled. It can also decrease a study’s statistical power or result in inaccurate estimations and conclusions. Hence, data normalization and missing value handling are considered the major problems in the data pre-processing stage, while classification algorithms are adopted to handle numerical features. In cases where the observed data contained outliers, the missing value estimated results are sometimes unreliable or even differ greatly from the true values. Therefore, this study aims to propose the combination of normalization and outlier removals before imputing missing values on the class center-based firefly algorithm method (ON  +  C3FA). Moreover, some standard imputation techniques like mean, a random value, regression, as well as multiple imputation, KNN imputation, and decision tree (DT)-based missing value imputation were utilized as a comparison of the proposed method. Experimental results on the sonar dataset showed normalization and outlier removals effect in the methods. According to the proposed method (ON  +  C3FA), AUC, accuracy, F1-Score, Precision, Recall, and AUC-PR had 0.972, 0.906, 0.906, 0.908, 0.906, 0.61 respectively. The result showed combining normalization and outlier removals in C3-FA (ON  +  C3FA) was an efficient technique for obtaining actual data in handling missing values, and it also outperformed the previous studies methods with r and RMSE values of 0.935 and 0.02. Meanwhile, the Dks value obtained from this technique was 0.04, which indicated that it could maintain the values or distribution accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3