Big data resolving using Apache Spark for load forecasting and demand response in smart grid: a case study of Low Carbon London Project

Author:

Ali El-Sayed Ali Hussien,Alham M. H.ORCID,Ibrahim Doaa KhalilORCID

Abstract

AbstractUsing recent information and communication technologies for monitoring and management initiates a revolution in the smart grid. These technologies generate massive data that can only be processed using big data tools. This paper emphasizes the role of big data in resolving load forecasting, renewable energy sources integration, and demand response as significant aspects of smart grids. Meters data from the Low Carbon London Project is investigated as a case study. Because of the immense stream of meters' readings and exogenous data added to load forecasting models, addressing the problem is in the context of big data. Descriptive analytics are developed using Spark SQL to get insights regarding household energy consumption. Spark MLlib is utilized for predictive analytics by building scalable machine learning models accommodating meters' data streams. Multivariate polynomial regression and decision tree models are preferred here based on the big data point of view and the literature that ensures they are accurate and interpretable. The results confirmed the descriptive analytics and data visualization capabilities to provide valuable insights, guide the feature selection process, and enhance load forecasting models' accuracy. Accordingly, proper evaluation of demand response programs and integration of renewable energy resources is accomplished using achieved load forecasting results.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3