Author:
Bhuiyan Md Roman,Abdullah Junaidi,Hashim Noramiza,Farid Fahmid Al,Uddin Jia
Abstract
AbstractThis article discusses an effective technique for detecting abnormalities in Hajj crowd videos. In order to guarantee the identification of anomalies in scenes, a trained and supervised FCNN is turned into an FCNN using FCNNs and temporal data. By minimizing computational complexity, incorrect movement detection is utilized to achieve high performance in terms of speed and precision. This FCNN-based architecture is designed to handle two primary tasks: feature representation and the detection of incorrect movement outliers. Additionally, to overcome the aforementioned issues, this research will generate a new crowd anomaly video dataset based on the Hajj pilgrimage scenario. On the proposed dataset, the UCSD Ped2, Subway Entry, and Subway Exit datasets, the proposed FCNN-based technique obtained ultimate accuracy of 100%, 90%, 95%, and 89%, respectively. Additionally, the ResNet50-based technique achieved ultimate accuracy of 96%, 89%, 94%, and 92%, respectively, for the proposed dataset, the UCSD Ped2, Subway Entry, and Subway Exit datasets.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献