Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation

Author:

Hashemi MahdiORCID

Abstract

AbstractThe input to a machine learning model is a one-dimensional feature vector. However, in recent learning models, such as convolutional and recurrent neural networks, two- and three-dimensional feature tensors can also be inputted to the model. During training, the machine adjusts its internal parameters to project each feature tensor close to its target. After training, the machine can be used to predict the target for previously unseen feature tensors. What this study focuses on is the requirement that feature tensors must be of the same size. In other words, the same number of features must be present for each sample. This creates a barrier in processing images and texts, as they usually have different sizes, and thus different numbers of features. In classifying an image using a convolutional neural network (CNN), the input is a three-dimensional tensor, where the value of each pixel in each channel is one feature. The three-dimensional feature tensor must be the same size for all images. However, images are not usually of the same size and so are not their corresponding feature tensors. Resizing images to the same size without deforming patterns contained therein is a major challenge. This study proposes zero-padding for resizing images to the same size and compares it with the conventional approach of scaling images up (zooming in) using interpolation. Our study showed that zero-padding had no effect on the classification accuracy but considerably reduced the training time. The reason is that neighboring zero input units (pixels) will not activate their corresponding convolutional unit in the next layer. Therefore, the synaptic weights on outgoing links from input units do not need to be updated if they contain a zero value. Theoretical justification along with experimental endorsements are provided in this paper.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference60 articles.

1. Agostinelli F, Hoffman M, Sadowski P, Baldi, P. Learning activation functions to improve deep neural networks. 2014. arXiv preprint, arXiv:1412.6830.

2. Ba J, Frey B. Adaptive dropout for training deep neural networks. In: Burges CJ, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, editors. Advances in neural information processing systems, vol. 26. Red Hook: Curran; 2013. p. 3084–92.

3. Bishop CM. Neural networks for pattern recognition. Oxford: Oxford University Press; 1995.

4. Clevert D-A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUs). In: Proceedings of the 4th international conference on learning representations. 2016. p. 1–14.

5. Collobert R, Bengio S. A gentle Hessian for efficient gradient descent. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing. 2004. p. 517–20.

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow stokes microscopy for high throughput classification of marine particles;Optics & Laser Technology;2024-09

2. A computer vision-based approach for estimating carbon fluxes from sinking particles in the ocean;2024-07-10

3. Size-Insensitive Network for Visible-Infrared Image Fusion Model;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

4. Deep Learning for Describing Breast Ultrasound Images with BI-RADS Terms;Journal of Imaging Informatics in Medicine;2024-06-26

5. Ensemble of Deep CNN Models for Human Skin Disease Classification;International Journal of Imaging Systems and Technology;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3