Author:
Theerthagiri Prasannavenkatesan,Ruby A. Usha,Chandran J. George Chellin,Sardar Tanvir Habib,Shafeeq B. M. Ahamed
Abstract
AbstractThe maize leaf diseases create severe yield reductions and critical problems. The maize leaf disease should be discovered early, perfectly identified, and precisely diagnosed to make greater yield. This work studies three main leaf diseases: common rust, blight, and grey leaf spot. This approach involves pre-processing, including sampling and labelling, while ensuring class balance and preventing overfitting via the SMOTE algorithm. The maize leaf dataset with augmentation was used to classify these diseases using several deep-learning pre-trained networks, including VGG16, Resnet34, Resnet50, and SqueezeNet. The model was evaluated using a maize leaf dataset that included various leaf classes, mini-batch sizes, and input sizes. Performance measures, recall, precision, accuracy, F1-score, and confusion matrix were computed for each network. The SqueezeNet learning model produces an accuracy of 97% in classifying four different classes of plant leaf datasets. Comparatively, the SqueezeNet learning model has improved accuracy by 2–5% and reduced the mean square error by 4–11% over VGG16, Resnet34, and Resnet50 deep learning models.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC