Improved cost-sensitive representation of data for solving the imbalanced big data classification problem

Author:

Fattahi Mahboubeh,Moattar Mohammad HosseinORCID,Forghani Yahya

Abstract

AbstractDimension reduction is a preprocessing step in machine learning for eliminating undesirable features and increasing learning accuracy. In order to reduce the redundant features, there are data representation methods, each of which has its own advantages. On the other hand, big data with imbalanced classes is one of the most important issues in pattern recognition and machine learning. In this paper, a method is proposed in the form of a cost-sensitive optimization problem which implements the process of selecting and extracting the features simultaneously. The feature extraction phase is based on reducing error and maintaining geometric relationships between data by solving a manifold learning optimization problem. In the feature selection phase, the cost-sensitive optimization problem is adopted based on minimizing the upper limit of the generalization error. Finally, the optimization problem which is constituted from the above two problems is solved by adding a cost-sensitive term to create a balance between classes without manipulating the data. To evaluate the results of the feature reduction, the multi-class linear SVM classifier is used on the reduced data. The proposed method is compared with some other approaches on 21 datasets from the UCI learning repository, microarrays and high-dimensional datasets, as well as imbalanced datasets from the KEEL repository. The results indicate the significant efficiency of the proposed method compared to some similar approaches.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3