Artificial intelligence for improving Nitrogen Dioxide forecasting of Abu Dhabi environment agency ground-based stations

Author:

AlShehhi Aamna,Welsch Roy

Abstract

AbstractNitrogen Dioxide (NO$$_{2}$$ 2 ) is a common air pollutant associated with several adverse health problems such as pediatric asthma, cardiovascular mortality,and respiratory mortality. Due to the urgent society’s need to reduce pollutant concentration, several scientific efforts have been allocated to understand pollutant patterns and predict pollutants’ future concentrations using machine learning and deep learning techniques. The latter techniques have recently gained much attention due it’s capability to tackle complex and challenging problems in computer vision, natural language processing, etc. In the NO$$_{2}$$ 2 context, there is still a research gap in adopting those advanced methods to predict the concentration of pollutants. This study fills in the gap by comparing the performance of several state-of-the-art artificial intelligence models that haven’t been adopted in this context yet. The models were trained using time series cross-validation on a rolling base and tested across different periods using NO$$_{2}$$ 2 data from 20 monitoring ground-based stations collected by Environment Agency- Abu Dhabi, United Arab Emirates. Using the seasonal Mann-Kendall trend test and Sen’s slope estimator, we further explored and investigated the pollutants trends across the different stations. This study is the first comprehensive study that reported the temporal characteristic of NO$$_{2}$$ 2 across seven environmental assessment points and compared the performance of the state-of-the-art deep learning models for predicting the pollutants’ future concentration. Our results reveal a difference in the pollutants concentrations level due to the geographic location of the different stations, with a statistically significant decrease in the NO$$_{2}$$ 2 annual trend for the majority of the stations. Overall, NO$$_{2}$$ 2 concentrations exhibit a similar daily and weekly pattern across the different stations, with an increase in the pollutants level during the early morning and the first working day. Comparing the state-of-the-art model performance transformer model demonstrate the superiority of ( MAE:0.04 (± 0.04),MSE:0.06 (± 0.04), RMSE:0.001 (± 0.01), R$$^{2}$$ 2 : 0.98 (± 0.05)), compared with LSTM (MAE:0.26 (± 0.19), MSE:0.31 (± 0.21), RMSE:0.14 (± 0.17), R$$^{2}$$ 2 : 0.56 (± 0.33)), InceptionTime (MAE: 0.19 (± 0.18), MSE: 0.22 (± 0.18), RMSE:0.08 (± 0.13), R$$^{2}$$ 2 :0.38 (± 1.35) ), ResNet (MAE:0.24 (± 0.16), MSE:0.28 (± 0.16), RMSE:0.11 (± 0.12), R$$^{2}$$ 2 :0.35 (± 1.19) ), XceptionTime (MAE:0.7 (± 0.55), MSE:0.79 (± 0.54), RMSE:0.91 (± 1.06), R$$^{2}$$ 2 : $$-$$ - 4.83 (± 9.38) ), and MiniRocket (MAE:0.21 (± 0.07), MSE:0.26 (± 0.08), RMSE:0.07 (± 0.04), R$$^{2}$$ 2 : 0.65 (± 0.28) ) to tackle this challenge. The transformer model is a powerful model for improving the accurate forecast of the NO$$_{2}$$ 2 levels and could strengthen the current monitoring system to control and manage the air quality in the region.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence for Ground-level Ozone Concentration Forecasting Using Data From the Ground Stations of the Abu Dhabi Environment Agency;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

2. GigMaleBPMN: Generation of Graphical Components from the BPMN Model Using Machine Learning;2023 Fourth International Conference on Information Systems and Software Technologies (ICI2ST);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3