Author:
Khemani Bharti,Patil Shruti,Kotecha Ketan,Tanwar Sudeep
Abstract
AbstractDeep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.
Funder
This work was supported by the Research Support Fund (RSF) of Symbiosis International (Deemed University), Pune, India.
Publisher
Springer Science and Business Media LLC
Reference90 articles.
1. Pucci A, Gori M, Hagenbuchner M, Scarselli F, Tsoi AC. Investigation into the application of graph neural networks to large-scale recommender systems, infona.pl, no. 32, no 4, pp. 17–26, 2006.
2. Mahmud FB, Rayhan MM, Shuvo MH, Sadia I, Morol MK. A comparative analysis of Graph Neural Networks and commonly used machine learning algorithms on fake news detection, Proc. - 2022 7th Int. Conf. Data Sci. Mach. Learn. Appl. CDMA 2022, pp. 97–102, 2022.
3. Cui L, Seo H, Tabar M, Ma F, Wang S, Lee D, Deterrent: Knowledge Guided Graph Attention Network for Detecting Healthcare Misinformation, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 492–502, 2020.
4. Gori M, Monfardini G, Scarselli F, A new model for earning in raph domains, Proc. Int. Jt. Conf. Neural Networks, vol. 2, no. January 2005, pp. 729–734, 2005, https://doi.org/10.1109/IJCNN.2005.1555942.
5. Scarselli F, Yong SL, Gori M, Hagenbuchner M, Tsoi AC, Maggini M. Graph neural networks for ranking web pages, Proc.—2005 IEEE/WIC/ACM Int. Web Intell. WI 2005, vol. 2005, no. January, pp. 666–672, 2005, doi: https://doi.org/10.1109/WI.2005.67.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献