Dissecting tumor antigens and immune subtypes for mRNA vaccine development in breast cancer

Author:

Li Lang,He Lvyuan,Zhu Ying

Abstract

Abstract Purposes Cancer mRNA vaccines are a promising strategy and a hot topic in cancer immunotherapy. However, mRNA vaccines for breast cancer (BRCA) remain undeveloped. This study aimed to identify potential tumor antigens for mRNA vaccine development and a population with BRCA suitable for vaccination. Methods Gene expression profiles and the clinical information of the TCGA-BRCA (the Cancer Genome Atlas Breast Cancer) and METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) cohorts were downloaded from the TCGA and cBioPortal databases, respectively. cBioPortal was used to identify mutant genes. DEG (differentially expressed gene) identification and survival analysis were performed with the GEPIA2 tool. ssGSEA (single-sample gene set enrichment analysis) was applied to estimate abundances of 28 immune cells for each sample. An unsupervised consensus clustering algorithm was used to identify ISs (immune subtypes). A graph learning-based dimensionality reduction analysis algorithm was utilized to construct an immune landscape. WGCNA (weighted correlation network analysis) was performed to identify immune gene modules. Results Four potential tumor antigens, i.e., SLC7A5, CHPF, CCNE1, and CENPW, associated with poor prognosis and APCs (antigen-presenting cells) among overexpressed and mutated genes were identified in BRCA. Two ISs (IS1-2) characterized by distinct clinical, immune cell infiltration, and molecular features were observed in both the TCGA-BRCA and METABRIC cohorts. BRCA patients with IS2 tumors related to poor prognosis had an immune "hot" phenotype, while those patients with IS1 tumors related to superior prognosis had an immune "cold" phenotype. Distinct IS tumors were observed in different ICD (immunogenic cell death modulator) and ICP (immune checkpoint) expression profiles. The immune landscape showed an immune distribution in BRCA patients. Additionally, we identified 2 immune gene modules with different biological functions. Conclusions SLC7A5, CHPF, CCNE1, and CENPW are the potential tumor antigens for mRNA vaccine development with BRCA. Patients with IS2 tumors are a suitable population for mRNA vaccination. This study provides a new insight into mRNA vaccine development, population selection for vaccination, and prognosis prediction.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3