Education on quality assurance and assessment in teaching quality of high school instructors

Author:

Chen Lei,Mohamed Mokhtar Mazlin

Abstract

AbstractResearch on language teaching quality has certainly stood out enough to be noticed as the momentum higher school teaching change proceeds to extend and develop. The way to further developing language teaching quality is to further develop teaching quality, and educator assessment is a significant instrument for doing as such. Accordingly, school administration necessitates the turn of events and refinement of a framework for assessing language teaching quality. Thus, hybrid learning technique for assessing the teaching quality of high school instructors should be created. We present an interesting model for assessing the quality of homeroom teaching involving artificial intelligence innovation in high schools, which depends on better hereditary calculations and neural networks. The fundamental thought is to utilize higher request factual elements (skewness, change, second and kurtosis), even vulnerability, Improved Independent Component Analysis (IICA), Holo-entropy based highlights to remove the underlying loads and limits of gathered data. The teaching quality assessment results were enhanced by further developing the neural network’s forecast accuracy and intermingling speed, bringing about a more down to earth plot for assessing high school language teaching quality. We have led simulation investigations and comparative analysis utilizing the Bi-directional Long Short Term Memory (Bi-LSTM) and Convolutional Neural Network (ConvNet/CNN) models. Then, an education quality assessment framework is laid out by hybrid optimizing model parameters which is Seagull Optimization Algorithm (SOA) and Red Colobuses Monkey (RCM).

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data based Monitoring and Evaluation Method for English Teaching Quality;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3