Artifact-free fat-water separation in Dixon MRI using deep learning

Author:

Basty Nicolas,Thanaj Marjola,Cule Madeleine,Sorokin Elena P.,Liu Yi,Thomas E. Louise,Bell Jimmy D.,Whitcher Brandon

Abstract

AbstractChemical-shift encoded MRI (CSE-MRI) is a widely used technique for the study of body composition and metabolic disorders, where derived fat and water signals enable the quantification of adipose tissue and muscle. The UK Biobank is acquiring whole-body Dixon MRI (a specific implementation of CSE-MRI) for over 100,000 participants. Current processing methods associated with large whole-body volumes are time intensive and prone to artifacts during fat-water separation performed by the scanner, making quantitative analysis challenging. The most common artifacts are fat-water swaps, where the labels are inverted at the voxel level. It is common for researchers to discard swapped data (generally around 10%), which is wasteful and may lead to unintended biases. Given the large number of whole-body Dixon MRI acquisitions in the UK Biobank, thousands of swaps are expected to be present in the fat and water volumes from image reconstruction performed on the scanner. If they go undetected, errors will propagate into processes such as organ segmentation, and dilute the results in population-based analyses. There is a clear need for a robust method to accurately separate fat and water volumes in big data collections like the UK Biobank. We formulate fat-water separation as a style transfer problem, where swap-free fat and water volumes are predicted from the acquired Dixon MRI data using a conditional generative adversarial network, and introduce a new loss function for the generator model. Our method is able to predict highly accurate fat and water volumes free from artifacts in the UK Biobank. We show that our model separates fat and water volumes using either single input (in-phase only) or dual input (in-phase and opposed-phase) data, with the latter producing superior results. Our proposed method enables faster and more accurate downstream analysis of body composition from Dixon MRI in population studies by eliminating the need for visual inspection or discarding data due to fat-water swaps.

Funder

Calico Life Sciences LLC

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3